[회귀분석] 1. 단순선형회귀

Linear Regression

Featured image

목차

  1. Simple Linear Regression
  2. Multiple Linear Regression
  3. Model Adequacy Checking
  4. Transformation and Weighting
  5. Diagnostics for Leverage and Influence
  6. Polynomial Regression Models
  7. Indicator Variables
  8. Multicollinearity
  9. Variable Selection
  10. Non-linear Regression
  11. Generalized Linear Models


1. Review


Probability Distributions
① : Normal Distribution

② : Chi-square Distribution

③ : T Distribution

④ : F Distribution


Statistical Estimation
Unbiasedness : $E(\hat{\theta_n}) = \theta$
Consistency : $\lim_{n \to \infty} P(|\hat{\theta_n}-\theta| \geq \epsilon) = 0 \;\; for \; \forall \;\epsilon >0$
Efficiency : $Var(\hat{\theta_n}) \leq Var(\tilde{\theta_n}) \;\; for \; \forall \;\ \tilde{\theta_n} >0$


Matrix




2. Simple Linear Regression


Model


Least-Square Estimation

$\iff Minimize \;\;S(\beta_0, \beta_1) = \sum_{i=1}^n (y_i - \beta_0 - \beta_1 x)^2 = \sum_{i=1}^n \epsilon_i^2$
$\iff ① : \frac{\partial S}{\partial \beta_0}|{\hat{\beta_0}, \hat{\beta_1}} = -2\sum{i=0}^n (y_i-\hat{\beta_0} - \hat{\beta_1}x_i) =0 \\
② : \frac{\partial S}{\partial \beta_1}|{\hat{\beta_0}, \hat{\beta_1}} = -2\sum{i=0}^n (y_i-\hat{\beta_0} - \hat{\beta_1}x_i)x_i =0 $

$\iff \hat{\beta_0} = \bar{y} - \hat{\beta_1}x_1 \\
\hat{\beta_1} = S_{xy}/S_{xx}$




(참고문헌)

  1. Montgomery 외, 『Introduction to Linear Regression Analysis』, Wiley